逢甲大學96學年度碩士班招生考試試題

編號:071

科目 離散數學 適用 生醫資訊暨生醫工程碩士學位 系所 學程、資訊工程系

時間

100 分鐘

※請務必在答案卷作答區內作答。

共3頁 第1頁

- 1. (40%) Choose the best answer. Each 4%.
 - (1) Consider the following program segment, where i, j, and k are integer variables.

for i = 1 to 20 do for j:=1 to i do for k = 1 to j do print $(i \times j+k)$

How many times is the print statement executed in this program segment?

- (a) 20^3
- (c) $\binom{20}{3}$ (d) $\binom{20}{4}$
- (e) none of the above.
- (2) How many of the following statements are true?
 - (i) $\exists x[p(x) \lor q(x)] \Leftrightarrow [\exists xp(x) \lor \exists xq(x)]$
 - (ii) $\forall x [p(x) \land q(x)] \Leftrightarrow [\forall x p(x) \land \forall x q(x)]$
 - (iii) $[(p \rightarrow q) \land (\neg r \lor s) \land (p \lor r)] \rightarrow (\neg q \rightarrow s)$
 - (iv) $[p \land (p \rightarrow q) \land (s \lor r) \land (r \rightarrow \neg q)] \rightarrow (s \lor t)$
 - (v) $p \land (q \lor r) \land (\neg p \lor \neg q \lor r) \Leftrightarrow p \lor \neg r$
 - (a) 1
- (b) 2
- (c)3
- (d)4
- (e) 5.
- (3) How many total ordering relations are there on a set with 5 distinct elements?
 - (a) 120
- (b) 2^{10}
- (c) 52
- (d) 203
- (e) none of the above.
- (4) In how many ways can one travel in the xy plane from (2, 1) to (7, 6) using the moves R: $(x, y) \rightarrow (x+1, y)$ and U: $(x, y) \rightarrow (x, y+1)$, if the path taken may touch but never rise above the line y = x - 1?
 - (a) 14
- (b) 32
- (c)42
- (d) 132
- (e) none of the above.
- (5) Let $A = \{1, \{1\}, \{2\}\}$. How many of the following statements are true?
 - $(i)1 \in A$
- $(ii)\{1\} \in A$
- $(iii)\{\{1\}\}\subseteq A$
- $(iv){2} \in A$
- $(v){2} \subseteq A$

- (a) 1
- (b) 2
- (c) 3
- (d)4
- (e) 5.

(6) Let $n \in \mathbb{Z}^+$. How many of the following statements are true?

- (i) gcd(8n + 3.5n + 2) = 1.
- (ii) gcd(n, n+2) = 2.
- (iii) Let $a, b, p \in Z^+$. If $p \mid ab$, then $p \mid a$ or $p \mid b$.
- (iv) $3|7^n-4^n$
- (a) 0
- (b) 1
- (c) 2
- (d)3
- (e) 4.

(7) Consider the following finite state machine.

	· v		w	
	0	1	0	1
s ₁	s ₆	83	0	0
s ₂	S 3	s_1	0	0
83	S ₂	S ₄	0	0
84	S ₇	S ₄	0	0
85	s ₆	\$7	0	0
s ₆	S ₅	s_2	1	0
\$7	S ₄	S ₁	1	1

Which of the following statements are true?

- (a) s_2 and s_7 are equivalent.
- (b) s_1 and s_5 are equivalent.
- (c) s_2 and s_5 are equivalent.
- (d) all of the above.
- (e) none of the above.

(8) For $\Sigma = \{0,1\}$, the string 00010 is in which of the following languages?

- (i) $\{0,1\}^*$
- (ii) $\{000,101\}\{10,11\}$ (iii) $\{00\}\{0\}^*\{11\}\{0\}^*$
- $(iv) \{00\}^* \{11\}^*$

- (a) only (i) and (iii)
- (b) only (iv)
- (c) (i), (ii) and (iii)

- (d) only (ii) and (iii)
- (e) none of the above

(9) A ship carries 48 flags, 12 each of the colors red, white, blue, and black. Twelve of these flags are placed on a vertical pole in order to communicate a signal to other ships. How many of these signals use an even number of blue flags and an odd number of black flags?

- $(a)4^{12}$
- (b) 4^{11}
- (c) 12!
- (d) 48!/12!
- (e) none of the above.

(10) Consider the following graph G.

How many of the following statements are true?

- (i) G has an Euler circuit.
- (ii) G has a Hamilton path.
- (iii) The chromatic number of G is 2.
- (iv) G is a bipartite graph.
- (a) 0
- (b) 1
- (c) 2
- (d)3
- (e) 4.

2. (10%) Find a simultaneous solution for the system of four congruences:

$$x \equiv 1 \pmod{2}$$

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 5 \pmod{7}$$

3. (10%) Using binomial expansions to evaluate:

(a)
$$\sum_{k=0}^{n} \binom{n}{k} 2^{k}$$

(a)
$$\sum_{k=0}^{n} {n \choose k} 2^k$$
 (b) $\sum_{k=0}^{n} k {n \choose k}^2$

- 4. (10%) In how many ways can integers 1, 2, 3, 4, 5, 6, 7, 8 and 9 be permuted such that no odd integer will be in its natural position?
- 5. (10%) Among the 4^n n-digit quaternary sequences, how many of them have an even number of 0's?

6. (10%)

- (a) Given a group of n women and their husbands, how many people must be chosen from this group of 2n people to guarantee the set contains a married couple?
- (b) Show that at any party with at least six people, there either exists a set of three mutual friends or a set of three mutual strangers.
- 7. (10%) Let a,b,c be positive integers, prove that the Diophantine equation ax + by = c has an integer solution $x = x_0$, $y = y_0$ iff gcd(a,b) divides c.