系所別:資訊管理研究所

目:離散數學

組別:乙組

第一頁

1. (a) What is the Pigeonhole Principle? (5%)

- (b) Show that if any five numbers from 1 to 8 are chosen, then two of them will add up to 9. (5%)
- 2. Give a grammar that specifies the language $\{(ab)^k c^{2l} | k_j \ge 1\}$. (10%)
- 3. Answer the following questions related go graph. We assume that a graph contains no multiple edges between two vertices, and contains no self-loop. Briefly explain how your answer is derived.
 - (a) What is the minimum number of vertices a graph can have if the graph has 100 edges? (5%)
 - (b) What is the maximum number of edges a graph can have if the graph has 100 vertices and the graph is bipartite? (5%)
- 4. Assume the functions f, g, and h take on only positive values. Determine whether the following statement is true or false. If the statement is false, give a counterexample:
 - (a) If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$ (4%)
 - (b) If $f(n) = \Theta(h(n))$ and $g(n) = \Theta(h(n))$, then $f(n) + g(n) = \Theta(h(n))$ (4%)
 - (c) If $f(n) = \Theta(g(n))$ then $cf(n) = \Theta(g(n))$ for any $c \neq 0$ (4%)
 - (d) If $f(n) = \Theta(g(n))$, then $2^{f(n)} = \Theta(2^{g(n)})$ (4%)
 - (e) If f(n)=O(g(n)), then g(n)=O(f(n)) (4%)
- 5. Given a encoding function $e: B^2 \to B^5$ as follows: (20%)

$$e(00) = 00000$$

$$e(01) = 01111$$

$$e(10) = 10101$$

$$e(11) = 11010$$

and the parity check matrix

$$H = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

we receive the word x = 01101

- (a) Find the coset leader of x, and decode x.
- (b) Suppose we know that 00000, 00001, and 00010 are coset leaders. Compute the syndrome of each coset leader, and decode x.
- 6. Try to use (a) characteristic polynomial method and (b) generating function method to solve the recurrence relation: (20%) $a_n = 2a_{n-1} + 1, a_0 = 1$

7.
$$f: G \to G$$
 is homomorphic, $H = \{a \in G \mid f(a) = a\}$, prove that H is a subgroup of G. (10%)